Aucklandia lappa reduces Aβ, hyperphosphorylated tau and memory deficits in 3xTg Alzheimer mice

Yu-Jung Cheng¹, Chieh-Hsin Lin² and Hsien-Yuan Lane ^{3*}

¹ Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung 40402, Taiwan

² Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan

³ Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan

Background

Alzheimer's disease (AD), the most common cause of dementia, is an age-dependent neurodegenerative disease. Previous ethnobiological approaches on traditional medical literature showed that Aucklandia lappa (Mu Xiang) has been used for treating dementia in traditional Chinese medicine for decades

Aims & Objectives

In this study we examined the effects of A. lappa on cognitive deficits, anxiety behavior, A β and tau accumulation in young and elderly triple transgenic (3xTg-AD) mice.

Methods

3xTg-AD mice were fed with A. lappa powder-supplemented chow between 4 and 8 months, or between 14 and 18 months at late AD stage.

Results

Compared to untreated 3xTg-AD mice, the performance of Morris water maze task in both young and old 3xTg-AD mice was significantly improved with A. lappa treatment. At late AD stage, A. lappa -treated transgenic mice showed a significant decrease in A β and hyperphosphorylated tau (PHF-tau) immunoreactivity at cortex and hippocampus. Behavioral tests showed that A. lappa did not improve depression- and anxiety-related behaviors evaluated by forced swimming test and elevated arm maze.

Discussion & Conclusion

Our findings suggested that treatment of young and elderly 3xTg-AD mice with A. lappa can reduce cognitive deficits, lower A β plaques, and prevent hyperphosphorylated tau immunoreactivity. Based on these results, A. lappa could be a potential remedial agent against AD.